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Abstract
We study two types of simplified Boolean dynamics in scale-free networks,
both with a synchronous update. Assigning only the Boolean functions
AND and XOR to the nodes with probabilities 1 − p and p, respectively,
we are able to analyze the density of 1’s and the Hamming distance on the
network by numerical simulations and by a mean-field approximation (annealed
approximation). We show that the behavior is quite different if the node always
enters in the dynamics as its own input (self-regulation) or not. The same
conclusion holds for the Kauffman NK model. Moreover, the simulation results
and the mean-field ones (i) agree well when there is no self-regulation and
(ii) disagree for small p when self-regulation is present in the model.

PACS numbers: 05.10.−a, 05.45.−a, 87.18.Sn

1. Introduction

Some physicists have claimed that it is possible to roughly classify its science branches in
physics of small, big and finally complex systems. Although such classification may appear
simple, it suits the present work very well. Complex systems are known as entities composed
of a large number of agents sharing a rich set of simple and nonlinear interactions. In such
systems, different behaviors can be achieved if the interaction change, even if the interacting
agent remains the same. These systems are well modeled by using network concepts, where
the agents are called nodes, and interactions appear as links.

Since the release of the Barabási and Albert paper [1] about growing networks, a lot of
knowledge has been achieved regarding the topology and properties of such objects [2, 3].
In addition, it was found that these types of networks can be found in a variety of fields like
social relation, voting, disease spreading, the WWW, neural and regulatory networks [4–15].
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The interaction among nodes of a network can be modeled in very different ways. In the
most simple models, it is assumed that (i) nodes can only have two states 0 (off) or 1 (on),
and that (ii) the dynamics is done via Boolean functions. These models, very suitable for
simulations in silico, can be be very useful to study agents that interact using on/off states
as happens in gene expression/repression [16] and protein activation/inhibition [2]. Models
involving Boolean dynamics are called random Boolean networks (RBNs). The first RBN
model was introduced by Stuart Kauffman, and it is known as the NK model since it was
composed of N nodes, each with its own random K inputs, and with the Boolean functions
randomly chosen [17].

In general, all RBNs share some common features. They are directed networks with
N nodes, and a node i has ki inputs that regulate its next state via some random Boolean
function Gi. The topology of the interactions can be expressed by using a proper connectivity
distribution of inputs P(k) and the type of the Boolean functions can be changed in order
to adequate the restrictions imposed by the problem. The Boolean functions can be chosen
basically in two different ways: (a) all functions are chosen a priori, and they are kept constant
during time evolution—the so-called quenched models; and (b) the functions change during
the dynamics, meaning that for each time step, each node have a new function—the so-called
annealed models. Another important dynamical feature is the update of the nodes. In the
synchronous or parallel mode, all nodes are updated simultaneously in each time step. On
the other hand, in the asynchronous or serial mode, first we randomly choose a node that is
updated immediately, and then this procedure is repeated until we have updated N nodes in a
single time step.

Recently scale-free distributions came up in the arena of RBNs in order to match biological
network scenarios. The first works have only used computer simulations [18–20]. Later, some
authors have focused on analytical approaches [21–24] giving a more detailed insight of the
problem. In this work we study random Boolean dynamics in scale-free networks. In our
model, we have nodes with Boolean variables (0, 1). The connections among nodes obey
the topological structure of scale-free networks and the relation among nodes’ variables is
performed via randomly chosen Boolean functions. We suppose that the dynamics is driven
only by the XOR and AND functions, which appear for each node with probabilities p and
1 − p, respectively. We chose the AND and XOR logical functions in order to simplify the
model, avoiding the necessity of defining 22K

different Boolean relations for each node. Note
that any Boolean function can be written as a linear combination of AND, XOR and OR. The
chosen functions are examples of extreme cases. When the AND function is applied to a set
with K Boolean variables, we will obtain 1 only if all variables are 1’s. On the other hand,
when the XOR function is applied to the same set, we will obtain 1 if the number of 1’s of
the set is odd. These observations imply that AND represents a very selective dynamical rule,
only one configuration of the 2K possible ones furnishes 1 as output, while XOR is related to a
non-selective dynamical one because half of the set configurations give 1 as output. Moreover,
it is known from previous works that the AND function leads to an ordered regime with two
fixed points, where all variables are 0’s or 1’s, and that the dynamical behavior generated by the
XOR function is more complex. Since these kinds of functions are the Boolean counterparts of
real reactions in the cell regulatory system [25, 26], they are important to the study of biologic
networks. We choose the parallel mode as the updated method. In order to compare with
another models, and for technical reasons, we also study such dynamics in networks without
a scale-free topology. The Kauffman NK model is briefly discussed as well. We performed
two distinct types of dynamics. In the first case the node that will be updated is regulated
only by the nodes which are connected to it. Rarely the node is connected to itself. It means
that its state is defined by the state of its neighbors, and its own state is almost never taken
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into account. In the second case, we explore self-regulation, which means that the new state
of the updating node is defined by its neighbors and always for its own state. We choose to
study such case because self-regulation is a well-known feature of genetic regulatory networks
[27]. In section 2, we introduce the scale-free networks and the Boolean dynamics used in
this work. The numerical simulations of the scale-free networks are discussed in section 3. In
section 4, we present a mean-field (annealed) approximation for these dynamics, leading to
an analytical way to calculate the average density of 1’s and the Hamming distance. We apply
the annealed approximation to networks without a scale-free topology, to the Kauffman NK
model and to scale-free networks. The comparison between the numerical results and those
of the annealed approximation is presented in section 5. We summarize our results in the last
section.

2. Networks and the dynamics

We have generated two classes of distinct networks, classified by the smallest number of links
that a node can have, in other words, by the smallest possible connectivity kmin of the network.
These networks were grown by the growing network with re-direction algorithm [28] and can
be classified as follows.

• kmin = 1—a node of the network, called old node, is selected with uniform probability;
then, a new node is linked to it with probability 1 − r or it is redirected to the ancestor of
the old node with probability r.

• kmin = 2—a new node has two links; the first link with an old node, selected with uniform
probability, is established with probability 1 − r or it is redirected to one of the two
ancestors of the old node with probability r; the same procedure is repeated for the second
link.

For kmin = 1, initially we have three nodes cyclically connected (the ancestors of nodes 1,
2 and 3 are 3, 1 and 2, respectively). A new node is randomly connected to an old node
(one of the three initial nodes). Then, this new link can be redirected to the ancestor of the
old node with probability r. This growing algorithm is repeated until we have N nodes in
the network. When kmin = 2, each of the initial three nodes has the other two nodes as
ancestors. Now, a new node is randomly connected to two old nodes, and each new link can be
redirected to the ancestor with probability r. We repeat this procedure until we have a network
with N nodes. These algorithms create scale-free networks characterized by a connectivity
distribution P(k) ∼ k−γ with γ = r−1 + 1 [28]. When r = 0, the nodes are linked in an
entirely random fashion and for r = 1, all nodes are connected to one of the three initial nodes
(super-hubs). The linear preferential attachment model of Barabàsi and Albert is obtained for
r = 0.5 (γ = 3). In this work, we consider three typical values of r: r = 0.5 (the Barabàsi
and Albert model), r = 0.8, representing models with large hubs, and r = 0.35, representing
models with small hubs.

A logical variable σi(t) is assigned to each node i and the state of the network at time t is
represented by a set of Boolean variables (σ1(t), σ2(t), σ3(t), . . . , σN(t)). Each variable σi(t)

is controlled by ki elements of the network {σ(t)}ki
= {σi1(t), σi2(t), . . . , σiki

(t)}. If kmin = 2,
ki is the connectivity of the ith node and the control elements are the nodes connected to it.
When kmin = 1, we have nodes with only one link. Since we need two inputs to apply the
Boolean functions, it is natural to assume that the node itself must always participate of the
dynamics. Now, the control elements are the ith node itself and nodes connected to it. It means
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that each node has an extra link to itself (self-regulation). In this case, ki is the connectivity
plus 1. The dynamics is given by

σi(t + 1) = Gi

({σ(t)}ki

)
, (1)

where Gi is the random function:

Gi =
{

AND with probability 1 − p

XOR with probability p,
(2)

that is assigned to each node i. Here p is an external parameter that controls how the logical
functions AND and XOR are distributed in the network.

An initial state {σ(0)} is created by assigning randomly 0’s and 1’s to all nodes. A
damaged copy {σ(0)} of the initial state is also created by changing the value of only one
randomly chosen node. Since the Hamming distance of two configurations is the number
of nodes that have different values in these configurations, the Hamming distance between
{σ(0)} and {σ(0)} is 1. Both the initial state and its copy evolve under the control of
equation (1). Once the new state of all nodes is calculated, the entire network is updated
(synchronous update) and the system goes to the next Monte Carlo time step (mcs).

We characterize the dynamical behavior by the average density of 1’s:

M(p, t) = lim
N→∞

〈
1

N

N∑
i=1

σi(t)

〉
,

and by the average of the Hamming distance

D(p, t) = lim
N→∞

〈
1

N

N∑
i=1

|σi(t) − σi(t)|
〉

.

Here, 〈· · ·〉 is an average over the initial states ({σ(0)}, {σ(0)}), and over sets of links of a
grown network with a specific γ and with the same p.

After a transient time, these quantities reach the stationary values M(p) and D(p) that
can be defined as

M(p) = lim
T →∞

1

T

∫ t+T

t

M(p, t ′) dt ′, (3)

D(p) = lim
T →∞

1

T

∫ t+T

t

D(p, t ′) dt ′. (4)

3. Numerical simulations

3.1. Data and results for kmin = 1

In order to consider finite-size effects, we grew networks with N = 1 × 104, N = 2 × 104 and
N = 4 × 104 nodes. The averages were performed with a number of samples varying from
102 (large p and large N) up to 5 × 104 (small p and small N). The probability p was taken in
the interval [0.001, 0.8] for the three values of r (0.35, 0.5 and 0.8). Since for p < 0.001 the
average quantities were very small, we decided that a good lower limit was p = 0.001. The
upper limit p = 0.8 was chosen because the values of the average quantities were similar,
in a log–log scale. The stationary values, M(p) and D(p), were reached after a very short
transient time (20 mcs). Estimations of M(p) and D(p), which are defined in equations (3)
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Figure 1. Log–log plots of M(p) versus p for (a) a network with kmin = 1, r = 0.5 and different
N and (b) a network with kmin = 1, N = 104 and different r.

and (4), were performed by considering t = 20 mcs and T = 80 mcs. These stationary values
remain basically the same if we increase both t and T.

We can see from figure 1 that M(p) behaves as a power function of type pm for the entire
range of p. By comparing the behavior of the smallest network (N = 1 × 104) with the largest
one (N = 4 × 104), we can see that finite-size effects are small for M(p). Moreover, it seems
that the exponent m does not depend on r. In order to evaluate the exponent m, we coalesce
all different sets (N varying from 104 up to 4 × 104 and r from 0.35 up to 0.8) and we do a
best fit. This is shown in figure 2. We obtain that

M(p) = apm,

with a = 0.46 ± 0.01 and m = 0.96 ± 0.01. Note that we have evaluated the exponent
by considering approximately two orders of magnitude in the p variable and that the fit
is very good. In fact, in all fitted data, we obtained a correlation coefficient larger that
0.999.

Plots of D(p) versus p are shown in figure 3 for r = 0.5 and networks with different
sizes. We can see that D(p) has a power law behavior (D(p) ∼ pd ) only when the probability
p is close to p = 0. Outside of these region, D(p) grows exponentially. By comparing the
behavior of networks with different sizes, we observe that finite-size effects are now important.

It turns out that all results can be well fitted by

D(p) = B exp(Cp) − B,

with C and B depending on the size of the network and on the parameter r. This can be seen
in figure 4. When p ≈ 0, we have that D ∼ BCp.

3.2. Data and results for kmin = 2

The simulation for the networks with kmin = 2 was realized in the same way as that for
kmin = 1, and the probability p was taken in the interval [0.01, 0.9] for r = 0.2, 0.5 and 0.8.
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Figure 2. Log–log plot of M(p) versus p for kmin = 1, N varying from 1 × 104 up to 4 × 104 and
r = 0.35, 0.5 and 0.8. It shows the best fit of the coalesced sets.

0.0 10
-0.7

10
-0.4

10
-0.2

10
-0.1

p

10
-6

10
-5

10
-3

10
-2

10
0

D
(p

)

r=0.35

r=0.5

r=0.8

10
-3

10
-2

10
-1

10
0

10
-8

10
-6

10
-5

10
-3

10
-2

10
0

D
(p

)

N=1 X 10
4

N=2 X 10
4

N=4 X 10
4

(a)

(b)

Figure 3. (a) Log–log plot of D(p) versus p for a network with kmin = 1, r = 0.5 and different
N; (b) linear-log plot of D(p) versus p for a network with kmin = 1, N = 2 × 104 and different r.

The range of p is rather narrow in this case, since the dynamics for kmin = 2 is more sensible to
p values, leading to M(p, t) → 0 and D(p, t) → 0 when p ∼ 0.001. This behavior perhaps
is related to the one found for RBN with only part of the canalyzing functions as update
functions, K = 2, and small p+, where p+ is the probability that a connection be excitatory
[29].

Figure 5 is similar to figure 2, where all sets of r and N are coalesced in one plot. We can
see that the finite-size effect is very small and we have
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Figure 5. Log–log plot of M(p) versus p for kmin = 2, N varying from 1 × 104 up to 4 × 104 and
r = 0.2, 0.5 and 0.8. It shows the best fit of the coalesced sets.

M(p) = apm,

with a = 0.70 ± 0.02 and m = 1.79 ± 0.01.
As we can see in figure 6, the Hamming distance D(p) follows a linear dependence with

p for large values of p (the plot shows p � 0.3). In this region, the behavior of D(p) is almost
independent of r, and we have
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Figure 6. Linear plot of D(p) versus p for kmin = 2, r = 0.2, 0.5 and 0.8 for N = 103.

D(p) ∼ bp,

where b = 0.78 ± 0.02, 0.76 ± 0.02 and 0.72 ± 0.02 for r = 0.2, 0.5 and 0.8, respectively.
However, the behavior of D(p) for p � 0.3 does not provide any suitable fit since for low
values of p we have a high concentration of the AND function and a low concentration of the
XOR function, leading most of nodes to the 0 state.

Note that results discussed in this section are valid for other values of r. We discuss only
the cases r = 0.5 (linear preferential attachment), one case with r < 0.5 (r = 0.35 or r = 0.2)
and one case with r > 0.5 (r = 0.8 or r = 0.7) because they represent typical behaviors.
We have simulated other cases, with less samples, and the results are similar. Although we
present D(p, t) for the initial condition D(p, 0) = 1, we have also simulated cases with
D(p, 0) > 1. We find similar results, probably because this new initial condition is a later
state of the initial condition with the smallest Hamming distance. In the next section, we will
develop a mean-field approach in order to see if its results agree with the numerical ones just
obtained.

4. Mean-field approximation

In this section, we present a mean-field approach (MF). It is based on a work of Derrida
and Pomeau [30], in which an annealed approximation was done for the Kauffman NK

model. The NK model is a cellular automaton with N nodes holding logical variables. Each
node σi is connected with another K nodes of the network meaning that all nodes have the
same connectivity K. The dynamics is given by equation (1), where Gi is a random Boolean
function. Although the model is defined by a quenched disorder, i.e. the Boolean function Gi

and the K nodes connected to each node σi are only randomly chosen at the initial time, in the
Derrida and Pomeau approximation it is assumed to be an annealed disorder. It means that the
Boolean function and the K nodes are randomly chosen at each time step. Moreover, in such
an approximation, the effect of the Boolean functions on a node is described by probabilities
that the output be 0 and 1. The approximation to our problems is similar to that of Derrida and
Pomeau. However, a difference appears in the application of the Boolean functions. Instead
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of using a probabilistic description for the effect of the Boolean functions, we determine the
effect of applying the XOR and AND operators in each configuration. We will first discuss
the case kmin = 2 because it is more illustrative than the more simple case kmin = 1.

4.1. Average density of 1’s for kmin = 2

Let us start our evaluation for the model without a scale-free topology. The dynamics is given
by equations (1) and (2). Suppose that the configuration of the system at time t, {σi(t)},
consists of n nodes with σ = 1 and N−n nodes with σ = 0. In order to study the density of
1’s, we can separate the configuration {σi(t)} into two sets: (i) set A(t) where all the nodes
have σ = 0, and (ii) set B(t) where all the nodes have σ = 1. Now we must randomly choose
K nodes that are linked to the node i. The probability that a given link comes from the set A(t)

is 1 − x = (N − n)/N and the probability that it comes from B(t) is x = n/N . Since each
node has K links, the list PK of the probabilities of the possible link configurations is

PK =
{(

K

K

)
(1 − x)K,

(
K

K − 1

)
(1 − x)K−1x,

(
K

K − 2

)
(1 − x)K−2x2, . . . ,

(
K

0

)
xK

}
.

(5)

We must now evaluate the output of each possible configuration under the application of the
operators AND and XOR. The Boolean function AND generates an output 1 if all inputs come
from the set B(t). The probability of this configuration is given by the last term of list (5).
The function XOR, however, produces 1 as output when its number of inputs equal to 1 is an
odd number, meaning that the number of links coming from the set B(t) is odd. Therefore,
the probability X of obtaining 1 as output is

X = p

K∑
m=1
m odd

(
K

m

)
(1 − x)K−mxm + qxK,

where p and q = 1 − p are the probabilities related to the XOR and AND operators. Since
we have

(y ± x)K =
K∑

m=0

(
K

m

)
yK−m(±x)m,

the sums of the even and odd terms are given by

K∑
m=0

m even

(
K

m

)
yK−mxm = (y + x)K + (y − x)K

2
, (6)

K∑
m=1
m odd

(
K

m

)
yK−mxm = (y + x)K − (y − x)K

2
. (7)

It follows that X = p

2 [1 − (1 − 2x)K ] + qxK . Assuming homogeneity, we can identify X as
M(p, t + 1), the fraction of 1’s at time t + 1. Then we obtain that M(p, t + 1) depends only
on M(p, t) as

M(p, t + 1) = p

2
{1 − [1 − 2M(p, t)]K} + qM(p, t)K. (8)
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Finally let us consider the scale-free topology. Each node now has k links with probability
P(k). Therefore, the above equation can be written as

M(p, t + 1) = p

2

{
1 −

∞∑
k=2

P(k)[1 − 2M(p, t)]k
}

+ q

∞∑
k=2

P(k)M(p, t)k. (9)

4.2. Average Hamming distance for kmin = 2

The calculation of the Hamming distance is done in a similar way. Let us again first study
the model without scale-free topology. At time t we are interested in the configuration {σ(t)}
resulting from the evolution of the initial configuration, and in the configuration {σ(t)}, which
appears from the evolution of the initial damaged copy. Suppose that they differ by n nodes.
Following Derrida and Pomeau [30], we define two sets: E(t) and F(t). The first one is the set
of all nodes of {σ(t)} and {σ(t)} that have the same values. The set F(t) is composed of the
n nodes that have different values in the two configurations. Therefore, the nodes which have
all links coming from set E(t) will have the same values at time t + 1 in the {σ(t)} and {σ(t)}
configurations and they will not contribute to the Hamming distance. On the other hand, the
Hamming distance could be changed by the nodes which have at least one link coming from
the n nodes of F(t).

Let us also define E0 and E1 as the number of nodes in the set E(t) with the values 0 and 1,
respectively. F0 is the number of nodes in the set F(t) that have σ(t) = 0, and F1 is the number
of nodes with σ(t) = 1. Observe that F0 + F1 = n and E0 + E1 = N − n. The next step is
to focus on a particular node i and to determine the probability of having K randomly chosen
nodes linked to it. The probability that a link comes from set E(t) with the corresponding node
having value 1 is z1 = E1/N . If the link comes from the same set but the node of E(t) has
value 0, the probability will be z0 = E0/N . w0 = F0/N and w1 = F1/N are the probabilities
that a link comes from F(t) when the corresponding elements of the set have values 0 and 1,
respectively. Since E0 + E1 + F0 + F1 = N , it is obvious that z0 + z1 + w0 + w1 = 1.

We are interested in the evaluation of W 1, the probability that σi(t + 1) = 1 and
σ +i (t + 1) = 0, and of W 0, the probability that σi(t + 1) = 0 and σi(t + 1) = 1. The
first step is to study the situation in which the node i has K − 1 links in set E(t) and only one
link in F(t). The list of the probabilities of the possible link configurations is

P
(1)
1 =

{(
K

1

)
w0,

(
K

1

)
w1

}{
zK−1

0 ,

(
K − 1

1

)
zK−2

0 z1,

(
K − 1

2

)
zK−3

0 z2
1, . . . , z

K−1
1

}
, (10)

where we must multiply each element of the first list by each element of the second one. We
must now evaluate the output of each possible configuration under the operator XOR. For the
first configuration

((
K

1

)
w1z

K−1
0

)
, the XOR operation furnishes that σi = 1 in the configuration

{σ(t + 1)} and σi = 0 in {σ(t + 1)}, implying that p
(
K

1

)
w1z

K−1
0 will contribute to W 1.

Note that the extra probability p is related to the XOR operator. The second configuration((
K

1

)
w1

(
K−1

1

)
zK−2

0 z1
)

will contribute to W 0 because the application of XOR gives us that
σi = 0 in {σ(t + 1)} and σi = 1 in {σ(t + 1)}. Since the third term

((
K

1

)
w1

(
K−1

2

)
zK−3

0 z2
1

)
will

contribute to W 1, it is easy to infer that for configurations beginning with w1, the terms zm
1

with m even contribute to W 1 and the ones with m odd enter in W 0. A similar analysis shows
that for configurations beginning with w0, the terms with m even contribute to W 0 and the
ones with m odd enter in W 1. When we apply the AND operator, only the terms w1z

K−1
1 and

w0z
K−1
1 give no null contributions to W 1 and W 0, respectively. Therefore, the contributions

10
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of the list (10) to W 1 and W 0 can be written as

W
(1)
1 =

(
K

1

)⎡
⎢⎣pw1

K−1∑
m=0

m even

(
K − 1

m

)
zK−m

0 zm
1 + pw0

K−1∑
m=1
m odd

(
K − 1

m

)
zK−m

0 zm
1 + qw1z

K−1
1

⎤
⎥⎦ ,

W
(1)
0 =

(
K

1

)⎡
⎢⎣pw0

K−1∑
m=0

m even

(
K − 1

m

)
zK−m

0 zm
1 + pw1

K−1∑
m=1
m odd

(
K − 1

m

)
zK−m

0 zm
1 + qw0z

K−1
1

⎤
⎥⎦ .

Using equations (6) and (7), W
(1)
1 can be written as

W
(1)
1 =

(
K

1

)[p

2
(w1 + w0)(z0 + z1)

K−1 +
p

2
(w1 − w0)(z0 − z1)

K−1 + qw1z
K−1
1

]
.

The equation for W
(1)
0 is obtained by changing w0 by w1 and w1 by w0 in the above equation.

The second step is to study the situation in which the node i has K − 2 links in set E(t)

and two links in F(t). Now the list of the probabilities of the possible link configurations is

P
(2)
1 =

(
K

2

){
w2

0, 2w0w1, w
2
1

}{
zK−2

0 ,

(
K − 2

1

)
zK−3

0 z1,

(
K − 2

2

)
zK−4

0 z2
1, . . . , z

K−2
1

}
.

(11)

There is no contribution of the XOR operator. The AND operator furnishes that only two
configurations

(
w2

1z
K−2
1 and w2

0z
K−2
1

)
, multiplied by probability q, contribute to W 1 and W 0.

Therefore, we find that

W
(2)
1 =

(
K

2

)
qw2

1z
K−2
1 and W

(2)
0 =

(
K

2

)
qw2

0z
K−2
1 .

The third step is to evaluate the probabilities generated by the application of XOR and
AND in the situation in which the node i has K − 3 links in the set E(t) and three links in
F(t). This situation is similar to the first one. We obtain that

W
(3)
1 =

(
K

3

)[p

2
(w1 + w0)

3(z0 + z1)
K−3 +

p

2
(w1 − w0)

3(z0 − z1)
K−3 + qw3

1z
K−3
1

]
.

The result for W
(3)
0 is identical with the previous one if we change w0 by w1 and w1 by w0.

The fourth step is similar to the second one and so on. Since W1 = ∑K
m=1 W

(m)
1 , we have

W1 = p

2

K∑
modd

(
K

m

)
[(w1 + w0)

m(z0 + z1)
K−m

+ (w1 − w0)
m(z0 − z1)

K−m] + q

K∑
m=1

(
K

m

)
wm

1 zK−m
1 .

To obtain W 0 we substitute w0 by w1 and w1 by w0 in this equation. Using again equation (6),
we obtain

W1 = q
[
(w1 + z1)

K − zK
1

]
+

p

4
{1 − [1 − 2(w1 + w0)]

K

+ [1 − 2(z1 + w0)]
K − [1 − 2(z1 + w1)]

K}, (12)

W0 = q
[
(w0 + z1)

K − zK
1

]
+

p

4
{1 − [1 − 2(w1 + w0)]

K

+ [1 − 2(z1 + w1)]
K − [1 − 2(z1 + w0)]

K}. (13)

11
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Assuming homogeneity, we can identify W 1 as w1,t+1, the fraction of 1’s of the set F(t)

at time t + 1, and W 0 as w0,t+1. Note that the fraction of 1’s of the system is given by
M(p, t + 1) = z1,t+1 + w1,t+1 and that it was already evaluated (see equation (8)). Identifying
z1,t+1 with Z1, we obtain

Z1 = M(p, t + 1) − W1.

Observe that the equations for W 1, W 0 and Z1 describe completely our system, since the
equation for Z0 is obtained from the normalization condition. However, it is usual to work
with variables M(p, t + 1), the density of 1’s and with D(p, t + 1), the Hamming distance.
From the definition of the Hamming distance we have that D(p, t + 1) = w1,t+1 + w0,t+1,
implying that

D(p, t + 1) = q
{
M(p, t)K + [D(p, t) − M(p, t) + 2z1,t ]

K − 2zK
1,t

}
+

p

2
{1 − [1 − 2D(p, t)]K}.

The equations for D(p, t + 1), M(p, t + 1) and z1,t+1 also describe completely the system.
However, if w1 = w0, we can see from equations (12) and (13) that W1 = W0. Solving
numerically these equations, we obtain that each initial configuration with w1 	= w0 evolves
to a fixed point with W1 = W0. Then we can assume that w0 = w1, without loss of generality,
and the dynamics of the system is described by only two equations, namely

D(p, t + 1) = 2q

{
M(p, t)K −

[
M(p, t) − D(p, t)

2

]K
}

+
p

2
{1 − (1 − 2D(p, t))K}, (14)

M(p, t + 1) = qM(p, t)K +
p

2
{1 − [1 − 2D(p, t)]K}. (15)

Finally let us consider the model with the scale-free topology. Since each node now have
k links with probability P(k), the above equations, which are valid for w1 = w0, can be written
as

D(p, t + 1) = 2q

{ ∞∑
k=2

P(k)

{
M(p, t)k −

[
M(p, t) − D(p, t)

2

]k
}}

+
p

2
− p

2

∞∑
k=2

P(k)[1 − 2D(p, t)]k, (16)

M(p, t + 1) = p

2

{
1 −

∞∑
k=2

P(k)[1 − 2M(p, t)]k
}

+ q

∞∑
k=2

P(k)M(p, t)k. (17)

4.3. M(p, t) and D(p, t) for kmin = 1

The main difference between this case and the previous one is the self-regulation mechanism:
the node itself always participates in its own dynamics. This node and the K nodes connected
to it are the control elements of the dynamics. Following a similar procedure of subsection 4.1,
we obtain

M(p, t + 1) = p

2

{
1 −

∞∑
k=1

P(k)[1 − 2M(p, t)]k+1

}
+ q

∞∑
k=1

P(k)M(p, t)k+1, (18)

where P(k) is the probability that a node had k links.

12
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The evaluation of the Hamming distance follows similar steps of subsection 4.2. For
scale-free systems, we again have the quantities W 0, W 1 and Z1. It turns out that when
w1 = w0, we have W1 = W0. When w1 = w0, the dynamics of the system is given by
equation (18) and by

D(p, t + 1) = 2q

{ ∞∑
k=1

P(k)

{
M(p, t)k+1 −

[
M(p, t) − D(p, t)

2

]k+1
}}

+
p

2
− p

2

∞∑
k=1

P(k)[1 − 2D(p, t)]k+1. (19)

If we put P(k) = δk,K in equations (18) and (19), we obtain the results for the model without a
scale-free topology. They are similar to the ones obtained for the case without self-regulation,
but with K replaced by K + 1 (see equations (14) and (15)). For scale-free systems, the
dynamics with self-regulation is similar to the usual dynamics if we change k by k + 1, except
in the distribution of connectivity P(k) (see equations (16) and (17)). Therefore, the dynamics
with self-regulation is different from the usual case. Let us investigate if this fact is also true
for the Kauffman NK model.

4.4. Kauffman model with self-regulation

The Kauffman NK model consists of N nodes holding logical variables σi . Each node is
connected with any K nodes of the network. Observe that a node i can have a link to itself with
small probability (K/N). The dynamics, given by equation (1), is determined by a random
Boolean function Gi. In the Derrida and Pomeau annealed approximation [30], the Boolean
function and the K nodes are randomly chosen at each time step. The configuration {σ(t)} is
split into the sets F(t), which consists of nodes having different values of σ in configurations
{σ(t)} and {σ(t)}, and E(t) when the previous condition does not hold. Then we are able to
define the probabilities w and z that a link of a particular node comes from the sets F(t) and
E(t), respectively. Obviously we have that z + w = 1. We want to evaluate the probability
W that the node i will have different values in {σ(t + 1)} and {σ(t + 1)}. If all K links came
from E(t), σi(t + 1) will have the same value in both {σ(t + 1)} and {σ(t + 1)}. However, if at
least one link comes from F(t), σi(t + 1) has a positive probability of having different values
in {σ(t + 1)} and {σ(t + 1)}. Due to the random Boolean function assignment, any node can
be 0 or 1 with probability 1/2, and the probability that σi(t + 1) will have different values in
{σ(t + 1)} and {σ(t + 1)} is 1/2. Therefore, the probability W is given by

W = 1

2

[(
K

1

)
zK−1w +

(
K

2

)
zK−2w2 + · · · + wK

]
.

Assuming that the system is homogeneous, we can identify the fraction of nodes with different
values in {σ(t + 1)} and {σ(t + 1)}, W , with the Hamming distance D(p, t + 1). Using that
w = D(p, t) in the previous equations, we obtain the traditional equation of Derrida and
Pomeau [30], namely

D(p, t + 1) = 1
2 {1 − [1 − D(p, t)]K}.

Let us consider now a model with self-regulation. Moreover, each node also has K links
connected to any of the N nodes of the network. We focus on the node i. This node has
probabilities zi = z and wi = w to belong to the sets E(t) and F(t), respectively. We want
again to compute W . If the node i is in the set F(t), it has probability 1/2 to contribute to W ,

13
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independently of the K links. Otherwise, at least one of the K links must be in the set F(t).
Taken into account these two situations, we have

W = wi

2
+

zi

2

[(
K

1

)
zK−1w +

(
K

2

)
zK−2w2 + · · · + wK

]
.

Identifying W with D(p, t + 1) and w with D(p, t), we find that the Hamming distance is given
by

D(p, t + 1) = 1
2 {1 − [1 − D(p, t)]K+1}. (20)

Observe that again this expression is similar to the previous one if K is replaced by K + 1.
Both models can be studied in a scale-free topology. It is easy to obtain

D(p, t + 1) = 1

2

{
1 −

∑
k

P (k)[1 − D(p, t)]θ
}
, (21)

where θ = k+1 for the case with self-regulation, and θ = k otherwise. These results are easily
generalized to taken in account the Derrida parameter pd (see Derrida and Pomeau [30]). In
this case, the probability 1/2 of equations (20) and (21) must be replaced by the corresponding
probability 2pd(1 − pd).

5. Mean-field and simulation results

5.1. Results for kmin = 2

The fixed points for the model without a scale-free topology are obtained by putting
M(p, t + 1) = M(p, t) = M∗ in the map given by equation (8). The fixed point M∗ = 0
always exists, and the local stability parameter λ, given by

λ = dM(p, t + 1)

dM(p, t)

∣∣∣∣
M∗

= pK(1 − 2M∗)K−1 + KqM∗K−1,

tells us that M∗ = 0 is stable for λ = pK < 1. It means that limt→∞ M(p, t) = 0 for
any initial value M(p, 0). When pK > 1 the initial conditions are attracted to a non-null
fixed point. It means that in the (p,K) plane, there is a curve, given by equation pK = 1,
separating the region in which M∗ = 0 is stable from the one that M∗ = 0 is not stable.
These features can be easily illustrated for K = 2. In this case, the non-null fixed point is
given by M∗ = (1 − 2p)/(1 − 3p) and the local stability parameter, evaluated for non-null
M∗, is λ = 2(1 − p). Then we have that λ < 1 for p > 1/2. It implies that for p > 1/2,
the non-null fixed point is attractive. For K > 2 the evaluation of the fixed point and λ was
performed numerically. In table 1 we compare the results of the annealed approximation for
three values K with the ones obtained by numerical simulations of N = 104 nodes, with the
average quantities evaluated after 103 mcs in 3000 samples. In the simulation results, the
numbers between parentheses are the errors that affect the last digits. Similar results were
obtained for other values of p. We can conclude that the MF results for the fraction of 1’s
agree very well with those from the numerical simulations.

The fraction of 1’s in a scale-free network is described by equation (9). Again the fixed
point M∗ = 0 is always present. λ can also be evaluated and we have that the M∗ = 0 is stable
if p < 1/〈k〉. When M∗ = 0 is not stable, we obtain numerically that there is a non-null fixed
point attracting all the initial conditions. These regions are separated in the (p, 〈k〉) plane by
a curve described by

p〈k〉 = 1. (22)
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Table 1. Values of density of 1’s (M(p)) and Hamming distance (D(p)) for the model without a
scale-free topology with kmin = 2, N = 10 000, and the dynamics described by the XOR and AND
functions without self-regulation. The subscript ‘sim’ is the simulated result and the ann refers to
annealed (MF) solution. The error in the last digit of an evaluated quantity in the simulations is
between parentheses.

K p Mann Msim Dann Dsim

2 0.0 0.000 0.000(1) 0.000 0.000(2)
0.2 0.000 0.000(1) 0.000 0.000(2)
0.5 0.002 0.054(3) 0.002 0.060(3)
0.7 0.364 0.362(3) 0.399 0.397(2)
1.0 0.500 0.500(2) 0.500 0.500(1)

5 0.0 0.000 0.000(1) 0.000 0.000(1)
0.2 0.000 0.017(3) 0.000 0.016(2)
0.5 0.241 0.241(2) 0.242 0.241(2)
0.8 0.402 0.402(2) 0.404 0.404(2)
1.0 0.500 0.500(1) 0.500 0.500(2)

10 0.0 0.000 0.000(1) 0.000 0.000(1)
0.2 0.084 0.084(1) 0.084 0.083(2)
0.5 0.250 0.249(1) 0.250 0.250(2)
0.8 0.400 0.400(1) 0.400 0.400(1)
1.0 0.500 0.500(1) 0.500 0.500(1)

Table 2. Values of density of 1’s (M(p)) and Hamming distance (D(p)) for Boolean dynamics
described by the XOR and AND functions without self-regulation on scale-free networks with
N = 10 000, kmin = 2 and r = 0.5 (γ = 3). The subscripts ‘sim’ and ‘ann’ refer to the simulated
and MF results, respectively. The errors evaluated in the simulations are between parentheses.

p Mann Msim Dann Dsim

0.2 0.003 0.038(3) 0.038 0.007(3)
0.3 0.075 0.085(3) 0.113 0.039(3)
0.5 0.227 0.216(3) 0.242 0.178(3)
0.7 0.352 0.350(4) 0.353 0.340(4)
0.8 0.406 0.409(4) 0.404 0.414(4)

In table 2, we compare the results of the annealed approximation with the ones obtained from
numerical simulations with 104 nodes and r = 0.5 (γ = 3). The M∗ results obtained by the
MF solution agree well with the ones from simulations. Similar results are obtained for other
values of r.

Equations (14) and (16) for the Hamming distance can be numerically solved to furnish
the fixed points in the case of the models without and with scale-free topology. Note that we
are using that w1 = w0 in both cases. In tables 1 and 2, we can compare the results obtained
from the annealed approximation with those obtained by the numerical simulations. We see
that they agree well. This conclusion holds for other values of the parameter p.

5.2. Results for kmin = 1

In this case, we have self-regulation. The fixed points for M∗ and D∗, obtained from
equations (18) and (19) with P(k) = δk,K , are displayed in table 3. We can see that MF
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Table 3. Values of density of 1’s (M(p)) and Hamming distance (D(p)) for the model without a
scale-free topology with kmin = 1, N = 10 000, and the dynamics described by the XOR and AND
functions with self-regulation. The subscript ‘sim’ is the simulated result and the ‘ann’ refers to
the annealed (MF) solution.

K p Mann Msim Dann Dsim

1 0.0 0.000 0.002(2) 0.000 0.000(3)
0.2 0.000 0.130(3) 0.000 0.058(3)
0.5 0.002 0.277(4) 0.002 0.114(4)
0.8 0.429 0.406(5) 0.454 0.172(5)
1.0 0.500 0.497(4) 0.500 0.382(5)

3 0.0 0.000 0.000(2) 0.000 0.000(3)
0.2 0.000 0.100(4) 0.000 0.073(4)
0.5 0.230 0.250(3) 0.232 0.233(3)
0.8 0.405 0.400(3) 0.410 0.399(3)
1.0 0.500 0.500(3) 0.500 0.500(3)

10 0.0 0.000 0.000(2) 0.000 0.000(3)
0.2 0.088 0.010(2) 0.088 0.099(3)
0.5 0.250 0.250(3) 0.250 0.250(2)
0.8 0.400 0.400(3) 0.400 0.400(3)
1.0 0.500 0.500(3) 0.500 0.500(3)

results are different from the ones obtained from numerical simulations for small K (K = 1
and K = 3), although they are similar when K is large (K = 10). In order to check our
analytical approximation, we have also performed numerical simulations with an annealed
dynamics. At each mcs we have randomly chosen the K nodes connected with each node of
the network. As we can see, the numerical results agree very well with the ones obtained from
MF.

The same conclusions hold for the scale-free topology. By using equation (18) in the
analysis of stability of the M∗ = 0 fixed point, we obtain that the curve separating the two
regions is given by

p(〈k〉 + 1) = 1. (23)

Even if we take into account that 〈k〉 of the above equation begins with k = 1 and the one
of equation (22) begins with k = 2, equations (22) and (23) are different. This implies that
self-regulation changes the dynamical behavior.

Table 4 shows the results of computational simulation and the annealed approximation. It
can be seen that the values of M and D obtained via MF when kmin = 1 are a bit smaller than the
ones of the kmin = 2 case. Another important feature is the relative good agreement between
the values of M obtained via simulation and that from annealed approximation. This match
does not occur for the Hamming distance. As we can see in table 4, the spreading damage
calculated via MF is quite bigger than the one obtained in simulations. We can conclude by
analyzing the Hamming distance, that the self-regulated nodes introduce a new dynamical
behavior, with distinct properties when compared to the behavior of the non-self-regulated
ones. It is worth commenting that self-regulation is a common feature in biological networks.
Maybe it is a process used in order to increase homeostasis, reducing the effect of a damage
introduced in the system.
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Table 4. Values of the density of 1’s (M(p)) and the Hamming distance (D(p)) for Boolean
dynamics described by the XOR and AND functions with self-regulation on scale-free networks
with N = 10 000, kmin = 1 and r = 0.5 (γ = 3). The subscripts ‘sim’ and ‘ann’ refer to
the simulated and MF results, respectively. The errors evaluated in the simulations are between
parentheses.

p Mann Msim Dann Dsim

0.2 0.091 0.097(3) 0.090 0.000(3)
0.3 0.141 0.140(2) 0.140 0.000(3)
0.5 0.246 0.228(3) 0.243 0.001(3)
0.7 0.351 0.325(2) 0.345 0.013(4)
0.8 0.401 0.380(2) 0.396 0.042(4)

6. Summary

In this work we studied Boolean dynamics in Kauffman models and in scale-free networks. The
dynamical models assigned only the XOR and AND operators to the nodes with probabilities p
and 1 − p. Regarding the inputs of the above-cited Boolean networks, two types of dynamics
were used. In the first one, the state of the nodes was regulated by the state of all nodes
connected to them. The second type was similar to the first one, with the difference that
the state of the node was used as its own input. Thus, in the first case, we did not have self-
regulation as in the second one. As shown in the results, these two types of dynamics presented
quite different behaviors. In both cases, a computational simulation and an analytical mean-
field approximation were performed in order to compare the density of 1’s, namely M, and
the Hamming distance D. The results for the dynamics with no self-regulation generated good
agreement between simulations and the MF approach. However, the case with self-regulation
had a clear disagreement with respect to D and M, for small values of p.
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